
International Journal of Scientific & Engineering Research, Volume 4, Issue 4, April-2013 1671
ISSN 2229-5518

IJSER © 2013
http://www.ijser.org

Parallelizing Digital Library Search
G.Narender#1, Dr. Meda Srinivasa Rao*2

Abstract— Digital libraries today are expected to store millions of articles or items of interest. Inexpensive and efficient access to
this information becomes critical for success of digital libraries. In order to keep the costs of maintaining digital libraries low,
computer programs are taking on the tasks that were traditionally carried out by skilled professional such as librarians. Such
tasks often include selection, cataloging and indexing of items in the digital library. Once articles in a digital library are indexed
with a set of keywords, computer programs are efficient at retrieving articles that are of interest to a digital library user by re-
sorting to keyword searches of the index database based on user specified keywords. Our research work is investigating ways to
speed up implementation and improve experience of using digital libraries. As part of this effort we are investigating ways to
use new language extensions such as the Intel Cilk Plus extensions to C and C++ from Intel Corporation that offer a quick, easy
and reliable way to improve the performance of programs on multi core processors. Multi core systems are now becoming prev-
alent on desktops, servers and even laptops. In this paper, we present the results from our work using the Cilk Plus extensions
to parallelize digital library searches for articles of interest.

Index Terms— Cilk Plus, Digital Library, Information Retrieval, Keyword Search, Multi Core Systems, System Utilization.

—————————— ——————————

1 INTRODUCTION
digital library is a library in which collections are stored
in digital format as opposed to print, microform, or other
media. The collections are accessible via computers [1].

The digital content may be stored locally, or accessed remotely
via computer networks. We can consider a digital library as a
type of information retrieval system. Digital library implemen-
tations are very often “automated” to keep the costs of main-
taining a digital library under control. The term “automated
digital library” is used to describe a digital library whose op-
eration is automated by using computer programs [2]. A ques-
tion that often comes up is can the experience of using a digi-
tal library come close to the experience of using a traditional
library. As computers become more and more powerful, the
experience of using digital libraries is expected to improve
and come close to the experience of using traditional libraries.
The improvements in the use of digital libraries are expected
to come about from advances in the power of computers driv-
en by Moore's law. Moore's law is the observation that the
number of transistors on a semiconductor is expected to dou-
ble approximately every eighteen months. Stated in other
words, computers are expected to become 100 times as power-
ful in a span of 10 years. This increased power of computers
combined with simple or even brute force algorithms can of-
ten outperform human intelligence. Computers are also highly
efficient at performing monotonous tasks. As an example, they
easily outperform humans in brute force searches.

We refer the user to [4, 5] for an overview of the digital library
search algorithms. The rest of the paper is organized as fol-

lows. Section 2 provides a brief introduction to Intel Cilk Plus
most of which has been replicated from our previous work on
parallelizing OCR error correction[3]. Section 3 describes our
algorithm for the non-parallel digital library search. We basi-
cally implement a brute force search mechanism. Section 4
describes our effort to parallelize the brute force search algo-
rithm using Intel Cilk Plus. We give the results of our work in
section 5 and conclusions and scope for future work in section
6.

2 INTRODUCTION TO CILK PLUS
Intel Cilk Plus provides extensions to C and C++ languages
that offer an easy and reliable way to improve the perfor-
mance of programs on multi core processors [8]. Three Intel
Cilk Plus keywords provide a simple model for parallel pro-
gramming. Intel Cilk Plus allows us to write parallel programs
using a simple model with only three new keywords to learn.
This allows C and C++ developers to move quickly into the
parallel programming domain. The three new supported
keywords are: _Cilk_for,_Cilk_spawn and _Cilk_sync. The
header file <cilk/cilk.h> defines macros that provide names
with simpler conventions (cilk_for, cilk_spawn and cilk_sync).
A cilk_for loop allows loop iterations to run in parallel and is a
replacement for the normal C or C++ for loop. The general
cilk_for syntax is:

 cilk_for (declaration;
 conditional expression;
 increment expression)

As an example given the following code, the Cilk runtime sys-
tem can choose to run different iterations of the loop in paral-
lel.

 cilk_for (int index = 0; index < 1000; index++)
 func(index);

A

————————————————
#1 Research Scholoar, Associate Professor, Department of CSE, Keshav
 Memorial Institute of technology, Hyderabad ,India.
. E-mail: guggillanarender@gmail.com
*2 Professor and Director, School of Information Technology JNTUH, Hyde
 rabad. E-mail:srmeda@gmail.com

International Journal of Scientific & Engineering Research, Volume 4, Issue 4, April-2013 1672
ISSN 2229-5518

IJSER © 2013
http://www.ijser.org

The cilk_spawn keyword is used with a function call and is
used to indicate to the Cilk runtime system that the function
call can be run in parallel with the caller

As an example, in the following code, the call to function
call1() can run in parallel with other_code. The spawned func-
tion is usually referred to as the child and the caller is referred
to as the parent.

 void caller() {
 cilk_spawn call1();
 other_code;
 }

The use of a cilk_sync statement in a function indicates that
the current function cannot continue in parallel with its
spawned children. The function needs to wait until all the
spawned children complete execution before it can continue
further.

As an example, in the following code, the parent function call-
er2 can only start executing the function call to call4 only after
the spawned call to call2() completes execution.

 void caller2() {
 cilk_spawn call2();
 call3();
 cilk_sync;

 call4();
 }

3 DIGITAL LIBRARY SEARCH
As previously mentioned, with ever increasing computer per-
formance, brute force search mechanisms implemented using
simple algorithms are expected to improve the experience of
using digital libraries. In order to test out our implementation
we started out with a word list of about 110000 words. We
built up a sample database by randomly associating words
from this word list as keywords for articles in the digital li-
brary. For our implementation, we assumed a digital library
with 5 million articles. Each article was associated with 20
randomly chosen words from the word list as keywords. Our
database is essentially a collection of 5 million records where
each record contains 20 keywords that were picked randomly
from our word list. The search algorithm takes a set of key-
words as input from the user and does a search through the
database to get articles of interest that are associated with
keywords that match the user specified ones. We expect the
performance of our search algorithm on this simulated data-
base to reflect real world performance of the same.

The search algorithm reads one record in the database at a
time. It then searches through the keywords for this record to
make sure that it contains every user specified keyword. If it

does, the item index gets added to a list. The search process is
repeated for every record in the database. At the end of the
algorithm, it reports the indices of articles that match user
specified keywords and the amount of time it took to search
through the database. The pseudo code for the search algo-
rithm looks as follows:

 set starting time to current clock counter;
 for every record in the database {
 get the keywords that are associated with the article;

 for each user specified keyword {
 if user specified keyword is not in articles key-
words {
 move on to the next record in the data-
base
 }
 }

 add the index of the record to the list of matching indices
 }
 set ending time to current clock counter;

 for each index in the list of matching indices {
 report index of matching article
 }

 report time taken for search (ending time – starting time)

4 PARALLEL DIGITAL LIBRARY SEARCH
For parallelizing the search algorithm we start out by making
the observation that searching through the database in the
sequential algorithm can be made inherently parallel. We can
search through multiple records in the database for user speci-
fied keywords in parallel. The search through an article's key-
words can be done fully independent of search through an-
other article's keywords. Once we recognize this, parallelizing
the search algorithm was simply a matter of using the cilk_for
loop in place of the for loop that iterates through the records in
the database. As a result, the pseudo code for the parallel ver-
sion of our algorithm simply looks as follows:
 set starting time to current clock counter;
 cilk_for every record in the database {
 get the keywords that are associated with the article;

 for each user specified keyword {
 if user specified keyword is not in articles key-
words {
 move on to the next record in the data-
base
 }
 }

 Atomically add the index of the record to the list of match-
ing indices
 }
 set ending time to current clock counter;

International Journal of Scientific & Engineering Research, Volume 4, Issue 4, April-2013 1673
ISSN 2229-5518

IJSER © 2013
http://www.ijser.org

 for each index in the list of matching indices {
 report index of matching article
 }

 report time taken for search (ending time – starting time)

As can be seen from the pseudo code for the parallel version,
parallelizing the algorithm was a simple matter of using the
cilk_for loop in place of the for loop. In order to avoid any race
conditions while adding the index of a matching article into
the matching list, we make sure that the list addition operation
is done atomically by making use of a lock. We checked the
correctness of the parallel version by making sure that indices
of the matching articles that get reported are the same in the
serial and the parallel version.

5 RESULTS
If In order to measure the speedup from the parallel imple-
mentation using Cilk, we measured the time it took to search
through the database for the serial and parallel implementa-
tions and computed the speedup. Our implementation used
the Intel C++ v13.0 compiler. The experiments were done on a
system with Intel core i5-2450 processor and 6 GB of memory
which can run up to four threads in parallel. We ran the serial
and parallel versions of the search algorithms five times and
collected the average of the time in seconds it took to complete
the search. Our measurements showed an average speedup of
4 when running the parallel version. This demonstrated the
ease and effectiveness of using Cilk Plus in parallelizing appli-
cations.

6 CONCLUSION AND FUTURE WORK

Because Our work has demonstrated the usefulness of Intel
Cilk Plus for parallelizing search algorithms. We were able to
demonstrate a significant speedup in the search algorithm by
simply resorting to the use of the cilk_for keyword. For future
work, we plan to investigate using Cilk Plus extensions to im-
prove other implementation aspects of digital libraries includ-
ing other retrieval technologies such as semantic searches.

REFERENCES
[1] Greenstein, Daniel I., Thorin, Suzanne Elizabeth. The Digital Library:

A Biography. Digital Library Federation (2002)
[2] Arms, William Y, Automated digital libraries: How effectively can

computers be used for the skilled tasks of professional librarian
ship?, D-Lib Magazine, July/August 2000, Volume 6 Number 7/8

[3] G. Narender, Dr. Meda Srinivas Rao. Parallel OCR Error Correction.
International Journal of Computer Science and Information
Technologies, Vol. 3 (6), 2012,5301-5303

[4] Jiban K Pal, Falguni Pal. Search Algorithms – An Aid to Information
Retrieval in Digital Libraries.

[5] Brijesh Shanker Singh. Search Algorithms. DRTC Workshop On
Digital Libraries, March 2003, Paper E

[6] http://software.intel.com/en-us/articles/intel-cilk-plus/

